Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202847

RESUMO

Arbidol hydrochloride is an antiviral product widely used in Russia and China for the treatment of, among other diseases, influenza. In recent years, it has turned out to be highly effective against COVID-19. However, there is little knowledge about its physicochemical properties and its behavior in the presence of various pharmaceutical excipients, which could be useful in the development of new preparations by increasing its solubility and bioavailability. For this reason, binary mixtures composed of arbidol hydrochloride and selected pharmaceutical excipients such as chitosan, polyvinylpyrrolione K-30 and magnesium stearate were prepared and subjected to differential scanning calorimetry (DSC), thermogravimetry combined with Fourier transform infrared spectrometry (TGA-FTIR) and Fourier transform infrared spectrometry (FTIR) analyses. In order to obtain clarity in the interpretation of the outcomes, chemometric calculations with factor analysis (FA) were used. Additionally, a powder X-ray diffraction (PXRD) and an intrinsic dissolution rate study were performed for arbidol hydrochloride itself and in the presence of excipients. As a result of the study, it was revealed that arbidol hydrochloride may undergo polymorphic transformations and be incompatible with chitosan and magnesium stearate. However, mixing arbidol hydrochloride with polyvinylpyrrolidone K-30 guarantees the obtaining of durable and safe pharmaceutical preparations.


Assuntos
Quimiometria , Quitosana , Indóis , Sulfetos , Varredura Diferencial de Calorimetria , Excipientes , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Análise Fatorial , Ácido Clorídrico , Antivirais
2.
J Pharm Biomed Anal ; 239: 115916, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134704

RESUMO

In the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity. Here, we proposed how to modify protocols presented by Valko into column safety conditions and evaluated their robustness using fractional factorial design. For robustness testing, four factors were selected: column temperature, mobile phase flow rate, maximum isopropanol concentration in the mobile phase, and buffer pH. Elaborate methods have been applied for the analysis of HSA affinity for three groups of antibiotic-oriented substances that vary in chemical structure: fluoroquinolones, sulfonamides, and tetrazole derivatives. Furthermore, based on the reversed-phase chromatography the workflow of pilot studies was proposed to select molecules that have high affinity to HSA and can not be eluted from the HSA column using the concentration of organic modifier recommended by the column manufacturer.


Assuntos
Quimiometria , Albumina Sérica Humana , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Albumina Sérica Humana/metabolismo , Proteínas Sanguíneas/metabolismo , Ligação Proteica
3.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834308

RESUMO

The aim of the study was to assess the effect of the synthesized antibacterial peptides: P2 (WKWK)2-KWKWK-NH2, P4 (C12)2-KKKK-NH2, P5 (KWK)2-KWWW-NH2, and P6 (KK)2-KWWW-NH2 on the physicochemical properties of a model biological membrane made of azolectin or lecithin. The Langmuir Wilhelmy method was used for the experiments. Based on the compressibility factor, it was determined that the monolayers formed of azolectin and peptides in the aqueous subphase are in the condensed liquid phase. At the boundary between the condensed and expanded liquid phases, there was a monolayer made of lecithin and P4, P5 or P6 in the aqueous subphase. In turn, the film consisting of lecithin alone (37.7 mN/m) and lecithin and P2 (42.6 mN/m) in the water subphase was in the expanded liquid phase. All peptides change, to varying degrees, the organization and packing of molecules in the monolayer, both those made of azolectin and of lecithin. The test results can be used for further research to design a system with the expected properties for specific organisms.


Assuntos
Lecitinas , Peptídeos , Peptídeos/farmacologia , Água/química , Propriedades de Superfície
4.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807212

RESUMO

Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of pharmacological action, including anticancer activity. In this work, reversed-phase high-performance liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromatographically determined lipophilicity parameters were compared with obtained logP, employing various computational approaches. Similarities and dissimilarities between experimental and computational logP were studied using principal component analysis, cluster analysis, and the sum of ranking differences. Furthermore, quantitative structure-retention relationship modeling was applied to understand the influences of sulfonamide's molecular properties on lipophilicity and affinity to phospholipids.


Assuntos
Quimiometria , Cromatografia de Fase Reversa , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa/métodos , Análise por Conglomerados , Humanos , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade , Sulfonamidas/farmacologia
5.
J Chromatogr A ; 1660: 462666, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34781046

RESUMO

Screening of physicochemical properties should be considered one of the essential steps in the drug discovery pipeline. Among the available methods, biomimetic chromatography with an immobilized artificial membrane is a powerful tool for simulating interactions between a molecule and a biological membrane. This study developed a quantitative structure-retention relationships model that would predict the chromatographically determined affinity of xenobiotics to phospholipids, expressed as a chromatographic hydrophobicity index determined using immobilized artificial membrane chromatography. A heterogeneous set of 261 molecules, mostly showing pharmacological activity or toxicity, was analyzed chromatographically to realize this goal. The chromatographic analysis was performed using the fast gradient protocol proposed by Valko, where acetonitrile was applied as an organic modifier. Next, quantitative structure-retention relationships modeling was performed using multiple linear regression (MLR) methods and artificial neural networks (ANNs) coupled with genetic algorithm (GA)-inspired selection. Subsequently, the selection of the best ANN was supported by statistical parameters, the sum of ranking differences approach with the comparison of rank by random numbers and hierarchical cluster analysis.


Assuntos
Membranas Artificiais , Redes Neurais de Computação , Cromatografia , Interações Hidrofóbicas e Hidrofílicas , Modelos Lineares
6.
Antibiotics (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680817

RESUMO

The emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to explain that immobilized artificial membrane chromatography can support the characterization of antimicrobial peptides. Consequently, the chromatographic experiments of three groups of related peptide substances: (i) short cationic lipopeptides, (ii) citropin analogs, and (iii) conjugates of ciprofloxacin and levofloxacin, with a cell-penetrating peptide were discussed. In light of the discussion of the mechanisms of action of these compounds, the obtained results were interpreted.

7.
J Chromatogr A ; 1656: 462552, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571283

RESUMO

Naturally occurring molecules are excellent sources of lead compounds. A series of oleanolic acid (OA) derivatives previously synthesized in our laboratory, which show promising antitumor activity, have been analyzed in terms of lipophilicity evaluation applying chromatographic and computational approaches. Retention data obtained on three reversed-phase liquid chromatography stationary phases (RP-HPLC) and immobilized artificial membrane chromatography (IAM-HPLC) were compared with computational methods using chemometric tools such as cluster analysis, principal component analysis and sum of ranking differences. To investigate the molecular mechanism of retention quantitive structure retention relationship analysis was performed, based on the genetic algorithm coupled with multiple linear regression (GA-MLR). The obtained results suggested that the ionization potential of studied molecules significantly affects their retention in classical RP-HPLC. In IAM-HPLC additionally, polarizability-related descriptors also play an essential role in that process. The lipophilicity indices comparison shows significant differences between the computational lipophilicity and chromatographically determined ones.


Assuntos
Ácido Oleanólico , Triterpenos , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Ácido Oleanólico/análogos & derivados
8.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299085

RESUMO

The ongoing search for effective treatment of Acne vulgaris is concentrated, i.a., on natural peptides with antimicrobial properties. The aim of this work was the development of new amino acid derivatives with potential activity on dermal infections against selected microorganisms, including the facultative anaerobe C. acne. The peptides P1-P6 were synthesized via Fmoc solid phase peptide synthesis using Rink amide AM resin, analyzed by RP-HPLC-MS, FTIR, DPPH radical scavenging activity, and evaluated against C. acne and S. aureus, both deposited and non-deposited in BC. Peptides P1-P6 presented a lack of cytotoxicity, antimicrobial activity, or antioxidative properties correlated with selected structural properties. P2 and P4-P6 sorption in BC resulted in variable data, i.a., confirming the prospective topical application of these peptides in a BC carrier.


Assuntos
Acne Vulgar/tratamento farmacológico , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Celulose/metabolismo , Fragmentos de Peptídeos/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Acne Vulgar/metabolismo , Humanos , Staphylococcus aureus/metabolismo
9.
Molecules ; 25(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092252

RESUMO

Currently, rapid evaluation of the physicochemical parameters of drug candidates, such as lipophilicity, is in high demand owing to it enabling the approximation of the processes of absorption, distribution, metabolism, and elimination. Although the lipophilicity of drug candidates is determined using the shake flash method (n-octanol/water system) or reversed phase liquid chromatography (RP-LC), more biosimilar alternatives to classical lipophilicity measurement are currently available. One of the alternatives is immobilized artificial membrane (IAM) chromatography. The present study is a continuation of our research focused on physiochemical characterization of biologically active derivatives of isoxazolo[3,4-b]pyridine-3(1H)-ones. The main goal of this study was to assess the affinity of isoxazolones to phospholipids using IAM chromatography and compare it with the lipophilicity parameters established by reversed phase chromatography. Quantitative structure-retention relationship (QSRR) modeling of IAM retention using differential evolution coupled with partial least squares (DE-PLS) regression was performed. The results indicate that in the studied group of structurally related isoxazolone derivatives, discrepancies occur between the retention under IAM and RP-LC conditions. Although some correlation between these two chromatographic methods can be found, lipophilicity does not fully explain the affinities of the investigated molecules to phospholipids. QSRR analysis also shows common factors that contribute to retention under IAM and RP-LC conditions. In this context, the significant influences of WHIM and GETAWAY descriptors in all the obtained models should be highlighted.


Assuntos
Antifúngicos/química , Membranas Artificiais , Fosfolipídeos/química , Piridinas/química , Piridonas/química , 1-Octanol/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Água/química
10.
Pharmaceutics ; 12(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114730

RESUMO

Multiple-unit pellet systems (MUPS) offer many advantages over conventional solid dosage forms both for the manufacturers and patients. Coated pellets can be efficiently compressed into MUPS in classic tableting process and enable controlled release of active pharmaceutical ingredient (APIs). For patients MUPS are divisible without affecting drug release and convenient to swallow. However, maintaining API release profile during the compression process can be a challenge. The aim of this work was to explore and discover relationships between data describing: composition, properties, process parameters (condition attributes) and quality (decision attribute, expressed as similarity factor f2) of MUPS containing pellets with verapamil hydrochloride as API, by applying a dominance-based rough ret approach (DRSA) mathematical data mining technique. DRSA generated decision rules representing cause-effect relationships between condition attributes and decision attribute. Similar API release profiles from pellets before and after tableting can be ensured by proper polymer coating (Eudragit® NE, absence of ethyl cellulose), compression force higher than 6 kN, microcrystalline cellulose (Avicel® 102) as excipient and tablet hardness ≥42.4 N. DRSA can be useful for analysis of complex technological data. Decision rules with high values of confirmation measures can help technologist in optimal formulation development.

11.
Antibiotics (Basel) ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887236

RESUMO

The formation of biofilms on biomaterials causes biofilm-associated infections. Available treatments often fail to fight the microorganisms in the biofilm, creating serious risks for patient well-being and life. Due to their significant antibiofilm activities, antimicrobial peptides are being intensively investigated in this regard. A promising approach is a combination therapy that aims to increase the efficacy and broaden the spectrum of antibiotics. The main goal of this study was to evaluate the antimicrobial efficacy of temporin A and the short lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 in combination with gentamicin against biofilm formed by Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Peptides were synthesized with solid-phase temperature-assisted synthesis methodology. The minimum inhibitory concentrations (MICs), fractional inhibitory concentrations (FICs), minimum biofilm eradication concentrations (MBECs), and the influence of combinations of compounds with gentamicin on bacterial biofilm were determined for reference strains of SA (ATCC 25923) and PA (ATCC 9027). The peptides exhibited significant potential to enhance the antibacterial activity of gentamicin against SA biofilm, but there was no synergy in activity against planktonic cells. The antibiotic applied alone demonstrated strong activity against planktonic cells and poor effectiveness against SA biofilm. Biofilm formed by PA was much more sensitive to gentamicin, but some positive influences of supplementation with peptides were noticed. The results of the performed experiments suggest that the potential application of peptides as adjuvant agents in the treatment of biofilm-associated infections should be studied further.

12.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512914

RESUMO

In this study, an innovative methodology to optimize amorphization during the hot melt impregnation (HMI) process was proposed. The novelty of this report revolves around the use of thermal analysis in combination with design of experiments (DoEs) to reduce residual crystallinity during the HMI process. As a model formulation, a mixture of ibuprofen (IBU) and Neusilin was used. The main aim of the study was to identify the critical process parameters of HMI and determine their optimal values to assure a robust impregnation process and possibly the highest possible amorphization rate of IBU. In order to realize this, a DoE approach was proposed based on a face-centered composite design involving three factors. The IBU/Neusilin ratio, the feeding rate, and the screw speed were considered as variables, while the residual crystallinity level of IBU, determined using differential scanning calorimetry (DSC), was measured as the response. Additionally, the stability of IBU under HMI was analyzed using high-performance liquid chromatography to estimate the extent of potential degradation. In order to verify the correctness of the DoE model, tested extrudates were manufactured by HMI and the obtained extrudates were thoroughly examined using scanning electron micrography, X-ray powder diffraction, and DSC.


Assuntos
Tecnologia de Extrusão por Fusão a Quente/métodos , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Ibuprofeno/química , Excipientes Farmacêuticos/química , Comprimidos , Difração de Raios X
13.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653016

RESUMO

Lipophilicity is a vital physicochemical parameter of a molecule, which affects several biological processes such as absorption, tissue distribution, and pharmacokinetic properties. In this study, evaluation of lipophilicities of a series of novel fluoroquinolone-Safirinium dye hybrids using chromatographic and computational methods is presented. Fluoroquinolone-Safirinium dye hybrids have been synthesized as new dual-acting hydrophilic antibacterial agents. Reversed phase thin-layer chromatography and micellar electrokinetic chromatography experiments were carried out. Furthermore, logP values of the target structures were predicted by means of different software platforms and algorithms. In order to assess similarities and dissimilarities of the obtained lipophilicity indexes, cluster analysis and sum of ranking differences were performed. The significant differences of calculated logP values (α = 0.05, p < 0.001) indicated that an experimental approach is necessary for lipophilicity prediction of this class of antibiotics. Chromatographic data indicated that the newly synthesized hybrid (fluoro)quinolone-based quaternary ammonium derivatives show less lipophilic character than the parent (fluoro)quinolones. Additionally, the chromatographically obtained lipophilicity indexes were evaluated for possible application in quantitative retention-activity relationships. The established lipophilicity models have the potential to predict antimicrobial activities of a series of quaternary (fluoro)quinolones against Bacillus subtilis, Escherichia coli, and Proteus vulgaris.


Assuntos
Algoritmos , Fluoroquinolonas/química , Cromatografia Capilar Eletrocinética Micelar , Cromatografia em Camada Delgada , Análise por Conglomerados , Corantes/química , Fluoroquinolonas/análise , Interações Hidrofóbicas e Hidrofílicas , Relação Quantitativa Estrutura-Atividade
14.
Pharmaceuticals (Basel) ; 12(1)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893881

RESUMO

The purpose of this paper is to examine the physical stability as well as viscoelastic properties of the binary amorphous ezetimibe⁻simvastatin system. According to our knowledge, this is the first time that such an amorphous composition is prepared and investigated. The tendency toward re-crystallization of the amorphous ezetimibe⁻simvastatin system, at both standard storage and elevated temperature conditions, have been studied by means of X-ray diffraction (XRD). Our investigations have revealed that simvastatin remarkably improves the physical stability of ezetimibe, despite the fact that it works as a plasticizer. Pure amorphous ezetimibe, when stored at room temperature, begins to re-crystallize after 14 days after amorphization. On the other hand, the ezetimibe-simvastatin binary mixture (at the same storage conditions) is physically stable for at least 1 year. However, the devitrification of the binary amorphous composition was observed at elevated temperature conditions (T = 373 K). Therefore, we used a third compound to hinder the re-crystallization. Finally, both the physical stability as well as viscoelastic properties of the ternary systems containing different concentrations of the latter component have been thoroughly investigated.

15.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658481

RESUMO

The widespread use of biomaterials such as contact lenses is associated with the development of biofilm-related infections which are very difficult to manage with standard therapies. The formation of bacterial biofilms on the surface of biomaterials is associated with increased antibiotic resistance. Owing to their promising antimicrobial potential, lipopeptides are being intensively investigated as novel antimicrobials. However, due to the relatively high toxicity exhibited by numerous compounds, a lot of attention is being paid to designing new lipopeptides with optimal biological activities. The principal aim of this study was to evaluate the potential ophthalmic application of lipopeptide (C10)2-KKKK-NH2. This lipopeptide was synthesized according to Fmoc chemistry using the solid-phase method. The antibiofilm activities of the lipopeptide, antibiotics used in ocular infections, and commercially available lens liquids were determined using the broth dilution method on polystyrene 96-well plates and contact lenses. Resazurin was applied as the cell-viability reagent. The effectiveness of the commercially available lens liquids supplemented with the lipopeptide was evaluated using the same method and materials. (C10)2-KKKK-NH2 exhibited stronger anti-biofilm properties compared to those of the tested conventional antimicrobials and showed the ability to enhance the activity of lens liquids at relatively low concentrations (4⁻32 mg/L). Estimation of the eye irritation potential of the lipopeptide using Toxtree software 2.6.13 suggests that the compound could be safely applied on the human eye. The results of performed experiments encourage further studies on (C10)2-KKKK-NH2 and its potential application in the prophylaxis of contact lens-related eye infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Lentes de Contato/microbiologia , Lipopeptídeos/farmacologia , Poliestirenos , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Humanos , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície
16.
Biochim Biophys Acta Biomembr ; 1861(1): 93-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463703

RESUMO

Short cationic lipopeptides are amphiphilic molecules that exhibit antimicrobial activity mainly against Gram-positives. These compounds bind to bacterial membranes and disrupt their integrity. Here we examine the structure-activity relation (SAR) of lysine-based lipopeptides, with a prospect to rationally design more active compounds. The presented study aims to explain how antimicrobial activity of lipopeptides is affected by the charge of lipopeptide headgroup and the length of lipopeptide acyl chain. The obtained SAR models suggest that the lipophilicity of short synthetic cationic lipopeptides is the major factor that determines their antimicrobial activities. In order to link the differences in antimicrobial activity to the mechanism of action of lipopeptides containing one and two hydrophobic chains, we additionally performed molecular dynamic (MD) simulations. By using combined coarse-grained and all-atom simulations we also show that these compounds neither affect the organization of the membrane lipids nor aggregate to form separate phases. These results, along with the onset of antimicrobial activity of lipopeptides well below the critical micelle concentration (CMC), indicate that lipopeptides do not act in a simple detergent-like manner.


Assuntos
Membrana Celular/efeitos dos fármacos , Lipopeptídeos/química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Simulação por Computador , Detergentes/química , Elétrons , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Lisina/química , Lipídeos de Membrana/química , Micelas , Testes de Sensibilidade Microbiana , Albumina Sérica Humana/química
17.
Pharm Res ; 35(1): 16, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305665

RESUMO

PURPOSE: The first objective is to evaluate the feasibility of melt-extruding polyvinyl alcohol-based amorphous solid dispersions for oral drug delivery. The second objective is to investigate the miscibility between polyvinyl alcohol 4-88 and copovidone, and to characterize the properties of ternary itraconazole amorphous solid dispersions comprising both polymers. METHODS: Samples were prepared using a co-rotating, twin-screw extruder. A solution precipitation study was conducted to compare the precipitation inhibition of polyvinyl alcohol against other commonly used polymers for amorphous solid dispersions. Miscibility between polyvinyl alcohol 4-88 and copovidone was determined using DSC and XRD analyses. All extrudates were characterized using DSC, XRD, and non-sink dissolution. RESULTS: Polyvinyl alcohol demonstrated the highest capacity for inhibiting the precipitation of itraconazole. Itraconazole was found to be more soluble in copovidone (>30%) than in polyvinyl alcohol 4-88 (<5%) in binary extrudates. Polyvinyl alcohol and copovidone are miscible when the proportion of polyvinyl alcohol 4-88 does not exceed 30% (w/w). Compared to binary extrudates, the ternary extrudate demonstrated a higher degree of supersaturation and more sustained supersaturation of itraconazole in purified water and phosphate buffer pH 6.8 solution. CONCLUSION: As a surface-active material, polyvinyl alcohol was effective in inhibiting precipitation of itraconazole in aqueous media. Solubility of itraconazole in polyvinyl alcohol in solid state was limited because of the high polarity of the polymer. Ternary systems comprising a mixture of polyvinyl alcohol and copovidone demonstrated better supersaturation in aqueous media than binary systems. Ternary systems benefited from both the high solubilizing capacity of copovidone and high precipitation inhibition capacity of polyvinyl alcohol.


Assuntos
Excipientes/química , Itraconazol/química , Álcool de Polivinil/química , Pirrolidinas/química , Compostos de Vinila/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Microscopia de Polarização/métodos , Solubilidade , Água , Difração de Raios X/métodos
18.
Amino Acids ; 50(3-4): 479-485, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29264738

RESUMO

In this study, we investigated the influence of molecular descriptors of cationic lipopeptides on their antimicrobial activity and hemolytic properties. The quantitative structure-activity relationship and quantitative structure-property relationship models were constructed. The antimicrobial, hemolytic and retention data were used as dependent variable and structural parameters as the independent ones. The obtained results suggest that the chromatographic indexes can be employed for prediction of antibacterial activity and that lipopeptides present nonspecific interaction between erythrocytes and bacterial membranes.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipopeptídeos/farmacologia , Relação Quantitativa Estrutura-Atividade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
19.
AAPS PharmSciTech ; 18(8): 3163-3171, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28534298

RESUMO

The purpose of this study was to evaluate the surface mineralization activity and in vitro drug behavior potential of two forms of mesoporous silica: powder and granulate. Ordered mesoporous SiO2 powder was synthesized by surfactant-assisted sol-gel process using tetraethoxysilane as a silica precursor and hexadecyltrimethylammonium bromide as the structure-directing agent. The granulate was prepared using silica powder and ethyl cellulose as a binding agent. Metronidazole (MT)-an anti-inflammatory substance and doxorubicin hydrochloride (ChD)-an anti-cancer drug were chosen as drug models for delivery studies. The results of structural characteristic studies, utilizing transmission electron microscope (TEM) and scanning electron microscope (SEM) images, powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption (BET) measurements, show that obtained materials have two-dimensional hexagonal p6mm symmetry, high specific surface area, narrow pore size, and a satisfactory mineralization behavior in the simulated body solution (SBF, pH = 7.4). The release rate of drugs depends upon the structural features of the drug molecules and the form of the carrier material. Of both the drugs analyzed, faster release was observed for small MT molecules characterized by weaker interactions with the carrier. In addition, the slower drug release was observed with granulate form due to increased diffusion barrier for drugs. Obtained results prove that the MT/ChD-loaded silica formulations could be attractive materials for filling bone defects and for local delivery systems.


Assuntos
Doenças Ósseas , Doxorrubicina/química , Metronidazol/química , Regeneração , Dióxido de Silício/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/metabolismo , Preparações de Ação Retardada , Doxorrubicina/metabolismo , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Metronidazol/metabolismo , Metronidazol/uso terapêutico , Porosidade , Pós , Dióxido de Silício/metabolismo , Dióxido de Silício/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
20.
Front Microbiol ; 8: 123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28203232

RESUMO

To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic lipopeptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...